A Mammalian bromodomain protein, brd4, interacts with replication factor C and inhibits progression to S phase.
نویسندگان
چکیده
Brd4 belongs to the BET family of nuclear proteins that carry two bromodomains implicated in the interaction with chromatin. Expression of Brd4 correlates with cell growth and is induced during early G(1) upon mitogenic stimuli. In the present study, we investigated the role of Brd4 in cell growth regulation. We found that ectopic expression of Brd4 in NIH 3T3 and HeLa cells inhibits cell cycle progression from G(1) to S. Coimmunoprecipitation experiments showed that endogenous and transfected Brd4 interacts with replication factor C (RFC), the conserved five-subunit complex essential for DNA replication. In vitro analysis showed that Brd4 binds directly to the largest subunit, RFC-140, thereby interacting with the entire RFC. In line with the inhibitory activity seen in vivo, recombinant Brd4 inhibited RFC-dependent DNA elongation reactions in vitro. Analysis of Brd4 deletion mutants indicated that both the interaction with RFC-140 and the inhibition of entry into S phase are dependent on the second bromodomain of Brd4. Lastly, supporting the functional importance of this interaction, it was found that cotransfection with RFC-140 reduced the growth-inhibitory effect of Brd4. Taken as a whole, the present study suggests that Brd4 regulates cell cycle progression in part by interacting with RFC.
منابع مشابه
Bromodomain Protein Brd4 Plays a Key Role in Merkel Cell Polyomavirus DNA Replication
Merkel cell polyomavirus (MCV or MCPyV) is the first human polyomavirus to be definitively linked to cancer. The mechanisms of MCV-induced oncogenesis and much of MCV biology are largely unexplored. In this study, we demonstrate that bromodomain protein 4 (Brd4) interacts with MCV large T antigen (LT) and plays a critical role in viral DNA replication. Brd4 knockdown inhibits MCV replication, w...
متن کاملReconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein.
The papillomavirus E2 protein functions in viral transcriptional regulation, DNA replication, and episomal genome maintenance. Viral genomes are maintained in dividing cells by attachment to mitotic chromosomes by means of the E2 protein. To investigate the chromosomal tethering function of E2, plasmid stability assays were developed in Saccharomyces cerevisiae to determine whether the E2 prote...
متن کاملKaposi's sarcoma-associated herpesvirus LANA-1 interacts with the short variant of BRD4 and releases cells from a BRD4- and BRD2/RING3-induced G1 cell cycle arrest.
The Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen 1 (LANA-1) is required for the replication of episomal viral genomes. Regions in its N-terminal and C-terminal domains mediate the interaction with host cell chromatin. Several cellular nuclear proteins, e.g., BRD2/RING3, histones H2A and H2B, MeCP2, DEK, and HP1alpha, have been suggested to mediate this inter...
متن کاملConserved P-TEFb-interacting domain of BRD4 inhibits HIV transcription.
We have identified a conserved region in the C-terminal domain of bromodomain-containing protein 4 (BRD4) that mediates its specific interaction with positive transcription elongation factor b (P-TEFb). This domain is highly conserved in testis-specific bromodomain protein (BRDT) and Drosophila fs(1)h. Both BRDT and fs(1)h specifically interact with P-TEFb in mammalian cells, and this interacti...
متن کاملThe Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation
The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2002